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1 INTRODUCT ION

The ability of modern instrumentation to collect
,local gravity data is quickly surpassing our capability to
process and interpret this data. For example, the NASA GEOS-3
satellite has already gathered 20 million measurements of
geoid height. Storage, analysis, and evaluation of this

data is a formidable task.

Fourier transforms are an efficient tool for analy-
zing such bulk data because space-domain convolutions are re-
placed by frequency-~domain multiplications. In principle,
Fourier transforms can be used for almost all data processing
tasks: upward continuation, computing anomalies from undula-
tions, smoothing, least-squares collocation, etc. However,
Fourier methods are based on the flat-earth approximation.
The accuracy of this approximation is therefore a key issue.
Flat earth theory is only valid on a local basis, but how
large is a '""local'" area? Do flat-earth methods always lead

to long-wavelength errors?

The purpose of this paper is to develop improved flat-
earth approximations and thereby enhance the usefulness of
Fourier methods in physical geodesy. These improvements are
accomplished by treating flat-earth theory as the leading term
of an asymptotic expansion.

2
Spg " Upp * SR T S8y " oo (1-1)

Here gaE and gpg are round- and flat-earth gravity models.
The remaining terms on the right hand side are first- and
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1igher-order corrections to flat-earth theory. The small
parameter = is inversely proportional to the earth's radius
and goes to zero in the limit of large earth radius. As will
be shown, the correction terms are relatively easy to calcu-
late using Fourier transforms. Therefore, the flat-earth
approximation can be improved to any desired accuracy. In
practice, the first correction term is often adequate because
the parameter ¢ is small (£<<l). Loosely speaking, the para-
meter = is small whenever the gravity signals of interest are
concentrated in wavelengths that are short relative to the
radius of the earth. This situation usually prevails because
90 percent of the energy (variance) in gravity anomalies is
contained in wavelengths shorter than 3000 km (Ref. 1).

For typical problems in geodesy, the (''inner") ex-
pansion (1) converges only in the vicinity of the point where
the flat-earth approximation has been applied. However, this
nonuniformity can be corrected by forming an ''outer' expansion
that is valid at large distances. These expansions are com-
plementary, share an overlapping region of convergence, and
can be combined (matched) to produce a uniformly-valid rep-
resentation of both the local and global field. 1In this paper,
inner and outer expansions are derived and appropriate matching
procedures are given.

Thé approach is based on the theory of matched asymp-
totic expansions (Refs. 2, 3). This theory was originally
developed for boundary-layer problems in fluid mechanics but
has found applications in many other areas of applied math-
ematics. In the present context, flat-earth geodesy is the
first term of an inner expansion (Egq. 1-1).

The connection between physical geodesy and boundary-
layer theory 1is not accidental. Gravity anomalies are caused
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chiefly by terrain and the associated isostatic compensation
at the Mohorovicic discontinuity. Most of the energy in ter-
rain is concentrated in wavelengths that are short relative
to earth's radius. Also, the earth's crust is relatively
thin compared to the earth's radius. Therefore, a ''gravity
boundary layer'" exists around the earth with a thickness of

a few hundred kilometers. Within this boundary layer the flat-
earth approximation and Fourier transforms are appropriate.
Outside the boundary layer, the curvature of the earth is im-
portant and spherical-earth formulas are needed. The theory
of matched asymptotic expansions provides a systematic method
of matching solutions that are valid inside and outside the
boundary layer.

In the next two sections the method of matched ex-
pansions is illustrated with examples. These examples pro-
vide an introduction to the method but are also important
in their own right because they give the appropriate outer
expansions that are needed in later sections of the
paper.

1.1 DETERMINISTIC EXAMPLE - SHALLOW POINT MASS

The simplest illustration of the flat-earth approxi-
mation is a point mass buried at a depth D that is shallow
relative to the radius of the earth Re(D<<Re). The distur-
bance potential T is

T(r,¢) = u[}z + (1-5)2 - 2r(l-c) cos 61-1/2 (l.1=1)
where

r = r'/Rg ¢ = D/Rg (1.1-2)

u = I{m/Re (1.1-3)

i




Here r' and ¥ are the radius and angle from the center of the
earth (Figure 1.1-1). Also, k and m are Newton's gravitational
constant and the mass of the disturbing body. The Legendre
expansion of Eq. 1.1-1 1is

o a+l

Q——» : Pn (cosy) (1.1-4)

TCv.u) = = -

N g

0

o

R-30468

Figure 1.1-1 Notation for Buried Point Mass Example

Because the parameter = is small, the Legendre series Eg. 1.1-4
converges slowly and is inaccurate for numerical evaluations.

A more useful series is obtained by expanding in powers of the
parameter ¢:

[}
ol
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However, this series fails to coanverge in the vicinity of the
point mass (r<l+ec and Y<g), as can be seen from the ratio

test. In the terminclogy of perturbation theory, the asymp-
totic expansion (Eq. 1.1-5) is "nonuniform"” and the perturbation
problem under consideration is '"singular'" rather than '"'regular'.
Equation 1.1-5 is referred to as an 'outer' expansion hence a
subscript (TO) is used.

The standard remedy for such a nonuniform expansion
is to define '"inner'" variables that magnify the region of
nonuniformity. This leads to an inner expansion that is valid
in the vicinity of the point mass. In general, the appropriate
magnification is dictated by the characteristic dimension of
the nonuniformity. In this example the altitude (r-1) and
angle Y both need to be stretched by the factor . Thus, inner
variables (z,R) are defined as

z = (r-1)/¢ and R = y/c (1.1-6)

The- inner expansion (Eq. 1.1-7) is obtained by substituting
Eg. 1.1-6 into Eq. 1.1-1

' 2
T.(z,R) ~ LS . 1+ £ (1-z)R ...
i r(1ez)2 + 2O 72 [ - S Py g }
{(1,31<T)

The first term of the inner expansion is the familiar flat-

earth approximation. By computiag the next term in the series

(Eq. 1.1-7) it can be shown that the series diverges for
R>0(1/ve), or equivalently %>0(vc), where O is the usual order
symbol. Recall that the outer expansion (Eq. 1.1-3) fails for
Y<0(=z). Thus, the inner and outer expansions share an over-
lapping region of convergence 0O(z) < J < O(ve). This overlap
implies that a uniformly valid '"composite' expansion can be
constructed from the inner and outer expansions.

9
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In general a composite expansion can be constructed

from an n-term outer expansion and m-term inner expansion,
where n and m are positive integers. TFor simplicity l-term
expansions will be used. First, the common part (cp) of the
inner and outer expansions is determined by writing the inner
expansion in outer variables and expanding for small =.

u/e 4
¥ : P 1.1-8
(22 = 52)1/2 ¢ 2 . 2,12 ( )

cp =

The same result is obtained by writing the l-term outer ex-
pansion in inner variables and expanding for small =. Thus,
the inner and outer expansions '"match" in the overlapping
region of convergence. A uniformly valid composite l-term
expansion can ue obtained by either the multiplicative or
additive rules (Ref. 4).

Tc(r,v) TiTo/cp (1.1=9)

Tc(r,u) =Ty Ty - Cp (L 1=10)
The additive rule appears more frequently in textbooks (Refs.
2, 3), but the multiplicative rule is more convenient for

this example. The multiplicative rule gives
2 &L 2

T (r,9) ~ f{r=l) +41 - i/e . (1.1=11)
. (1'24-1-21'cos:'u)1'/2 [(1+z)2+p%) /2
& <22 " 32)1/2 .
- — — ) (1.1-12)
(r®+1-2rcosy) "’ ({i*z) = K] ' "

At low altitudes, the outer expansion and common part cancel j
each other in Eg. 1.1-11 so that the composite solution is
dominated by the inner term. At high altitudes, the inner

expansion and common part cancel each other in Eq. 1.1-12
and the outer term dominates.

10




Errors associated with the various expansions for the

potential field of the point mass are illustrated in Figure
1.1-2. The depth of the point mass is 319 km, corresponding
to € = 0.05. The mass of the disturbing body is adjusted so
that an undulation of 1 meter is generated directly over the
point mass. Figure 1.1-2 shows that the error in the l-term
inner expansion (flat-earth approximation) is zero directly
over the point mass (Y=0), rises to 1 cm at y=4 degrees, and
rises to 1 cm again at ¥Y=180 degrees. The 2-term inner expan-
Sion is more accurate than the l-term inner expansion in the
vicinity of the point mass (¥<30 degrees) but suffers the same
error growth at large angles. Conversely, the l-term ocuter
expansion is relatively accurate at large angles (w>30 degrees)
but inaccurate near the point mass. Thus, the inner and outer
expansions are complementary: they provide accuracy in the
"near-field" and ""far-field'", respectively.

R-30994
1.0
0.3
= 056
Q
=
(=]
o=
& 04
=
(=]
=
S 02 < 1-TERM
2
3 COMPOSITE
=
b= ]
0 - 1
i
4.2
T g e I L5
1} 30 60 30 120 150 180
ANGLE ¢ 0EGREES
Figure 1.1-2 Errors in Various [xpansions of the Undulation
Generated by a Shallow Point Mass (£=0.05, D=
319 km). The Undulation Directly Over the Point

Mass is 1 Meter.
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A frequency interpretation of the inner and outer ex-
pansions can also be made, as follows. The Legendre series
corresponding to Eq. 1.1-3 1is

D
| T () = nzo ovT SaPalcosV) (1.1-13)
ep = (1-e)" -~ u(l-ne+....) (1.1-14)

The expansion (Eq. 1.1-14) is accurate for low-order coefficients,
but fails for n>1/s. In other words, the outer expansion (Eg.
1.1-3) provides only long-wavelength information. The inner ex-
pansion (Eq. 1.1-7) has the opposite property: it provides only
short-wavelength information. Together the two expansions des-

£ cribe the gravity field accurately over all wavelengths.

For comparison, the errors in the various expansions
are 1llustrated in Figure 1.1-3 for a deeper point mass (==0.20,
D=1270 km). As before, the mass of the disturbing body is ad-
justed so that an undulation of 1 meter is generated directly
over the point mass. The error in the l-term inner expansion
(flat-earth approximation) rises to 4 cm at Y=18 degrees and
again at =180 degrees. The 2-term inner expansion and l-term
outer expansion provide improved accuracy in the near field
and far field, as already seen in Figure 1.1-2.

At this point it is worthwhile to review the key ideas.
Five formulas have been given for the potential field of a point
mass: the exact formula (Eq. 1.1-1) and four expansions -
Legendre (Eq. 1.1-4), outer (Eq. 1.1-5), inner (Eq. 1.1-7), and
composite (Eq. 1.1-11). The round-earth formulas (Egqs. 1.1-1,
. 1.1-4 and 1.1-5) are useful at high altitudes (r>l+c<) but in-
% accurate at low altitudes. (For example, when D=10 km and
altitude = 5 km the exact formula and single-precision (7-place)

arithmetic yield only l-place accuracy.) The inner expansion

e e ihe s o st A Sl
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Figure 1.1-3 Errors in Various Expansions for the
. Undulation Generated by a Shallow Point
Mass (£=0.20, D=1270 km). The undulation
Directly Over the Point Mass is 1 Meter.

(Eq. 1.1-7) is useful at low altitudes but fails to converge

at large angles (y>0(vc)). The composite expansion (Eq. 1.1-11)
enjoys the best properties of round- and flat-earth geodesy:

it is accurate everywhere (all altitudes and angles). Gener-
alizing from this example, the following lesson can be drawn.
Round- and flat-earth formulas are useful for representing
long- and short-wavelength gravity disturbances, respectively.
Composite expansions provide a uniformly valid representation

over all wavelengths.

It should be emphasized that the usual flat-earth
approximation is often adequate. The accuracy improvements

13




afforded by inner and composite expansions, such as Egs. 1.1-7
and 1.1-11, are typically rather small (less than one percent
in the example, Figure 1.1-2). However, the expansions are
still quite useful because they provide an error analysis of
the flat-earth approximation and a systematic method for im-
proving the approximation, if such improvements are needed.

The Fourier transform of the l-term inner expansion
is defined as

=~
Tolug, @y, 2) =000, (x,p2) 15 P00z (1.1-185)
-
Inasmuch as the potential field of the point mass is isotropic,
the two-dimensional Fourier transform (Egq. 1.1-15) can be

written as a one-dimensional Hankel transform (Ref. 3).

x
Tl(m,z) @ 2% I RT, (R,2) J_(«R)dR (1.1-1%8)
o o
» ) E
* 2 7 (ufe ) = J (wR)dR(1.1-17)
0 [(1+z)“ . g2 ]1/2 o
= N S
w wioF uy B (1.1-18)

This integral is given by Ref. 6, thus

- 2m -(1+
T (w,2) = e GEES (1.1<15)

zw

Notice that the Fourier transform (Ea. 1.1-19) of the point
mass field is unbounded at zero frequency.
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1.2 STATISTICAL EXAMPLE - ATTENUATED WHITE NOISE ACF

The following model was recently proposed for the
gravity disturbance potential autocovariance function (acf)

(Ref. T):

= 53(2-e)3 g2 (p2 -(1-6)4]
GRS [}-(1-5)4][r2+(l-a)4 - 2(1-2)" r cos q 3/2 e
where

T = rlrz/Rg € = D/Re (1.2-2)
Here rl,rz, and ¢ are the radii and aangular separation of the

points being correlated. The model contains two free para-
meters (Gz,D) that are fitted to the data. The Legendre ex-
pansion of Egq. 1.2-1 is

Fgiey? o2 = e
s(r,v) = = 'Z- g 5 } (2n+1) ﬁ—%?l—- Pn(cosw)
Pf<1-s) } (e e

(1.2-3)

For modeling local (short wavelength) gravity distur-
bances, the characteristic distance D is small relative to
the radius of the earth. (Typically, D=50 km and <£=0.008).
Therefore, Eqs. 1.2-1 and 1.2-3 are ill-conditioned and slowly
converging, respectively. Expanding in powers of the parameter

£ yields
, 2e2 52(r2-1) 2(5r2-1) - 2(1+3r%)r cos v
3 . LT, P) =~ ) 3/2 l+e ) )
© (r“+1-2r cos y) (r“-1)(r“+1 - 2r cos )
1
(1.2<4)
k&




This (outer) expansion diverges when r<l+0(z) and ¥<0(z). As
in the earlier example, inner variables (z,R) are defined by
Eg. 1.1-86. The inner expansion is

a(R,2) ~ 4(2+2) a e (2+z)2 + 2(3-2%) 32 .

- [(2+z)2 i 32] 3/2 2(2+z) [ (2+2)2 + 2]

(1.2-3)

As before, the first term of the inner expansion is the famil-
iar flat-earth approximation. The inner expansion fails at
high altitudes (z>2/z) and large shift distances %>0(1).

A composite expansion will now be formed from the 1-

term inner and outer expaansions. The common part (cp) is

2 2
op = 40”2z 2 4523‘(r—1) (4 Bul
D DuEa o ) ) S
(z“+R‘)3/2 Er_l) +v2} 3
and the multiplicative composite expansion is
2 2 2 2
= [(r-1)° + =] 54 r+1 4(2+2)c” 1B
Pal®ih) = =73 e s A e
(r®+1-2r cosw)™/ p B2+z) +R J
2.2,.2 o 2+ 2R 2/2
! 2e“g°( L 2 o ) - (1.2-8)

(r2+l-2r cc:s;p)3/2 < B2+z)2 + 32}3"

The Fourier transform of the l-term inner expansion
is given by IZgs. 1.1-15, 1.1-16 and 1.2-5, thus

k-

2
21(2,2) = 87(2+2z)0" .
0 L(2+2)

R

Ccama)t « 2 1578 0 T
(1.2-9)
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This integral is given in Ref. 6, hence

2 o~(2*ziu (1.2-10)

@l(m,z) = 8mg
Notice that unlike the previous example (Eq. 1.1-19), the
Fourier transform (Eq. 1.2-10) is bounded at zero frequency.
These transforms (Eqs. 1.1-19 and 1.2-10) are referred to in
later sections of the paper.

For simplicity, both the deterministic and statis-
tical examples are based on isotropic gravity fields. For
nonisotropic fields, the appropriate transformation between
outer variables (r,v,a) and inner variables (x,y,z) is

X = (/) sin a (1.2-11)
y = (V/e) cos o (1.2=-12)
z = (r-1)/¢ (1.2-13)

The origin of the inner coordinate system is on the surface of
the sphere at the center of the local field (e.g., directly
above the point mass). The spherical angles ¥ and a denote
the angular separation and azimuth of a point relative to this
origin (Figure 1.2-1).

17
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Figure 1.2-1 Definition of Local Coordinates
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2. UPWARD CONTINUATION VIA MATCHED ASYMPTOTIC EXPANSIONS

Poisson’'s integral for upward continuation above a
spherical earth is well known (Ref. 8).

2 2‘!7 T 1 r ] ' ’
Pr o a5 f | 272 7% 3 ) sine d8 an - (2-1)
4 o o
2% = 52 & 1 - 25 cosy (2-2)
cosy = cosfcosd + sinesinS' cos (x’ = A) (2-3)

If many evaluations of this integral are needed, it is more
efficient to use transforms:

-] l :
T(r,9,)) = ] === Y_ (3,\) (2-4)
n=o il 8 ;
2T T ' ' ' ' t
v (9,0) =282 [ 1 1% ") p_(cosy) sins de da
o] o

(2-3)

However, the harmonic expansion (Eq. 2-4) converges too slowly
for modeling local (short-wavelength) gravity disturbances.
Local disturbances can be extrapolated aloft with the flat-
earth version of Poisson's integral.

8

[ ™°(u,v) dudv
o [(x-u)2+(y-v)2+z?]

T(X,7,2) = == (2-6)

§ S

3/2

Flat-earth upward continuation can also be done using Fourier
transforms (Appendix A).

19




il , = =4 Ca o
T(x,7,2) = =5 [/ To(ml,wg) a2 g ‘<JIX+*2y)dz,du9
47" - =5 =i
(2-7)
7O, s (9, X+,7) (2-8)
(-ul;wz) = J’J’ T (X,Y) e i 2 dxdy
-0

However, the flat-earth formulas (Eqs. 2-6 to 2-8) are

only valid in the vicinity of the origin (small x, y and z).
Therefore, neither the round- nor flat-earth formulas provide
an accurate, uniformly-valid method for upward continuation
of local gravity disturbances.

In this section, an inner expansion is derived for
upward continuation of local gravity data. The nonuniformity
of this expansion at large distances is corrected by matching
with an outer expansion. The resulting composite expansion
is uniformly valid yet retains the computational advantages
of the flat-earth formulas (Eqs. 2-8 to 2-8). In other
words. the composite expansion makes it possible to use Fourier
transforms for upward continuation and obtain results that
are accurate throughout the entire space (r,3,\) outside the
sphere. For simplicity, the derivation is carried out for the
special case of an isotropic gravity field. The nonisotropic
expansions are inferred.

The disturbance potential satisfies a Dirichlet problem
outside a sphere.

- - 2 o coty - l<r<= 5
or T Tt T Tup T Ty 70 feacyen Lt




T = Ty ¢e) r=1 (2-10)

T (p:e) = T (v+27:¢) (2-11)

Subscripts denote differentiation (3T/3r=Tr). It is assumed
that the boundary potential 1° depends on a small parameter
€, and can be expanded in a power series

Phie) ~ T0(E) » eTDRY + ... (2-12)

where R=y/=. An example of such a power series is the shallow
point mass, where

. s
ey « e 10 2 8 B, (2-13)
' (Ler2) 172 2 2
) 1+R

according to Eq. 1.1-7. In more practical situations such as
upward continuation of local gravity data, the dimension of
the local field is D, s=D/Re, and Eq. 2-12 truncates to a
single term (T§=O, n=2,3,...). (Such an example is given in
the next section).

An asymptotic inner expansion is sought of the form
Ti(r,w;s) ~ Tl(z,R) + st(z,R) s R (2-14)

where z=(r-1)/ec. When Eq. 2-14 is substituted into Eq. 2-9,

the following sequeance of houndary-value problems is ob-
tained.

First order problem

p ! =
T += T, +T =0 O<z<= (2-15)
lRR R 1R 1zz




T1 Ty (R) z=0 (2~-16)
Second-order problam
1
2 +3T, +7T =2z T - 2T (2-17)
ZRR = 23 2zz lzz lz
a 79 = (2-18)
T2 TZ(R) z=0
The solutions are found by Hankel traansforms (Ref. 3).
First order solution (isotropic case)
e ‘ -uZ i
2.(z.,B) = 3£‘ Py (= J g L) (2-19)
Bl 27 )
0
T, (w) = 27 (7 RTO(R) J (Ru) dR (2-20)
0
Second order solution (isotropic case)
- Z m .
Tz(z,R) ety (Ll 2z T1 )
2
1 «“@ =0 -0z
M Ty (4) e 70 (Rw) du (2-21)
0
Tg(w) = 27 | RTH(R) J (Rw) 4R (2-22)

0

If the boundary condition is nomisotropic,
&

O

rms are replaced by Fourier traasiorms.

the Hankel trans-
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First order solution (nonisotropic case)

b

ik a9 =0 ~Z =i (. Xt
T,(x,7,2) = po f_&/ T, (uy,w5)e ™% (g “2”dw,_dw2
(2-23)
-0 % ) 1w, X, 7)
Ti(wy,0g) = {Gf Ty (%, 7) o 1t a7 gxdy (2-24)
Second order solution (nonisotropic case)
T, (X,7,2) = - 2 (T, +2T, )
2 )Yr 2 l 12}
1 Ff =0 ya—uZ ALy o) 5
+ — T (e @ia)ie e “  dw,dw
S 2 i 12
(2-25)
© 1wy X+w,y) :
=0 s 20 . 2 :
To(wy wg) = li To(x,7) e dxdy (2-26)

A comparison of Egs. 2-7 and 2-23 reveals that the first term
of the inner expansion (Eq. 2-14) is the familiar flat-earth
approximation. This confirms that Eqs. 1.2-11 through 1.2-13
is an appropriate choice of inner variables.

The Fourier transform of the two-term inner expansion
is
= ~ WO ] -0z €2 o a_o~
Ti(wl’wZ’z) Tl(wl,,uz) e [l - 2 (1 JJZ)] (A 21)
-0Z

+ £ Tngl,mz)e

In many cases, such as real data processing, the boundary con-
dition is only one term:
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T%(y,a;¢) = Tg(x,y) (2-28
TZ(x,y) =0 n=2,3,... (2-29)

This is a special case which simplifies the solutions (Egs.
2-19 to 2-27). In particular, the parameter = disappears

from the solution, when the solution is written in dimensional
form. The dimensional variables are primed:

n
]

xD y =yD z = 2D (2-30)
o T L /ffg:—fg
wy = wl/D wy = wz/D w = Ywy T tug (2-31)
The solution (Egq. 2-27) becomes
Ty (wy,ug,2 ) *~ Toay,u)e™ % 1 - 22— (1-w 2 )| (2-32)

Equation 2-32 provides a very simple recipe for upward contin-
uation of potential field data. First, the data is Fourier trans-
formed to obtain the two-dimensional array To(wl,»z). This

array is multiplied by the appropriate factors in Eq. 2-32

and inverse transformed to obtain the final results. In the

limit of large earth radius, Eq. 2-32 degenerates into the

usual flat-earth formula. Of course, the inner expansion

(Eq. 2-14) is only valid near the origin (small x,y,z). An

outer expansion is needed to remove this limitation.

The foregoing analysis provides a method for compu-
ting the inner expansion using Hankel or Fourier transforms.

Direct integrals caan also be used, as shown in Appendix B.




However, the Fourier transforms are more efficient than

numerical integration.

The outer expansion will now be constructed. On an
outer scale, the local boundary condition Eq. 2-10 shrinks to 2
point as the parameter ¢ goes to zero. Therefore, the outer
expansion consists of singularity functions that satisfy two
requirements: they must obey Laplace's equation and match the
inner expansion. Examples of singularity functions that
satisfy Laplace's equation have already been studied in the
previous sections, namely

T(r,p) = u(r2+ 1-27r c:osxu)'l/2 (2-33) ¥

and

O—

2
(F =1} 2
’I‘(r,-\p) = 2 (4"34)
(r2+l-2r cosw)a/2

To match the inmer and outer expansions, the l-term
inper expansion is written in outer variables and expanded
for small =.

O i —a(r-1)/¢
@ =gy | 0T (0 T (e dw (2-35)

A change of variable (u=w/c) yields

2) =)
cp = E= u TCeu) e (71U 1 (4u) du  (2-36)
2 0 1l 0

The long-wavelength properties of the local field are paramount
as £ goes to zero. If the transform T? is bounded at zero
frequency then Eq. 2-36 becomes

<o)}fO w e (P 1Yy (g au (2-37)

O
'g
[}
]
n

[\V]
=
3
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= TER TNe0) (£-1)/] (v-1)° & 32 |I/2 (2-38)
where

=0 - o) .

TL(0) = 27 jOR T(R) dR (2-39)

From the earlier (statistical) example, one can see that Eq.

2-34 is the appropriate singularity for matching Eq. 2-38 with

.2
IR T?_(O> (2-40)
The l-term multiplicative composite expansiocn is
9 3/2
Tc(r'”) ~ Lﬁr l) +i)~] - r;l T,(z,R) (2-41)

(r +1-2r coeb)

Here T (z R) denotes the first term of the inner expansion,
namely Eq. 2-19 .

Returning now to Eq. 2-36, suppose that the transform
To is unbounded at zero frequency as in the first example

g
(Bg. 1.1-19). If the local field satisfies

where A is a constant, then Eq. 2-36 becomes

-
()

= /
{ e—\r-l)u

0O
(o}
]
ey
=

) Jo (vu) du (2-43)
o)

-
™

: 2. -17% _ &, .8 -1/2
[(r-1)2+y2171/2 o 52(52.32)-1/

NG P CTROSVN (TR SS T 4

BRSTSERRES - © VS ANERHINeS




In this case, the appropriate singularicty for the outer expansion
is Eq. 2-33 with

uo= Ag/(2m (2-45)

The composite expansion is

2. 20100
T (r.9) - —iiizkl o0 T.(z,R2 2-46
& (r2+l-2r ':.osnu)]‘/2 1< ) it

Inasmuch as the local boundary condition Eq. 2-10 shrinks to a
point as the parameter = goes to zero, the outer expansion
and common part are the same for both isotropic and noniso-
tropic local fields. Thereifore, the appropriate composite
expansion for nonisotropic local fields is

[(r-l)2+w2]3/2

(r2+1-2r_cosw)3

/2 rZI T (x.y.2) . (2=47)

TC(I'HP,&) o~

if the following integral is bounded and non-zero:

[[ T3(x,y) dxdy (2-48)

However if the integral (Eq. 2-48) is unbounded and

w0

el WO T R e Gl S (2-49)

where A is a constant, then the composite expansion is =

[(r‘le & w2]1/2
1/2

Tc(r.w,a) =~

1 (r"+1-2r cosv)




The reader should keep in mind that the composite expansions,
such as Eq. 2-41, are uniformly valid. Thus, upward contin-
uations of local fields can be done using flat-earth formulas
and when the flat-earth results are multiplied by the appro-
priate factor in Eq. 2-41, they become valid for all altitudes
and angles (all r,y).

When processing data, the local field will usually
have bounded non-zero energy at zero frequency, i.e., Eg. 2-48
is bounded and non-zero. Therefore, Eq. 2-47 is the appropriate
composite expansion. A notable exception to this rule is a
local field due to one or more point masses. In this case,
Eq. 2-48 is unbounded and Eq. 2-50 is the proper expansion.

Both the disturbance potential and the disturbance
potential acf satisfy a Dirichlet problem outside a sphere
(Ref. 9). Therefore, expansions for upward continuation of
acfs can be inferred from the previous results. For upward
continuation of the disturbance potential, (r, ¥, a) denote
normalized radius (r=r'/Re), angle, and azimuth. For
upward continuation of acfs, (v,x) denote the angle and

azimuth between the points being correlated and

" 2 «51)
r = r1r2/Re (2-31)

where r1 and r, are the radii of the two points.




35 LIMITED DATA EXAMPLE

The earlier examples are instructive because they
provide a simple exposition of the key notions:

° For purposes of modeling local gravity
disturbances, matched expansions and
Fourier transforms are more accurate and
efficient than spherical-earth formulas
and Legendre transforms.

* The first term of the inner expaansion
is the familiar flat-earth approximation.
Improved accuracy is obtained by comput-
ing additional terms.

® The nonuniformicty of the inner expansion
at large distances is corrected by outer
and composite expansions.

Also, the section on upward continuation shows that the inner
expansion can be computed with Fourier transforms.

Unfortunately, neither of the earlier examples
address the most common type of local gravity field, namely,
the gravity field over a limited patch of the earth's surface.
A‘prototype problem is to compute the exterior potential from
data within the patch. The boundary condition is

o t(x)Y) -1 < X,Y < L
T (Y,a;e) = (3=1)
4 0 otherwise

_

Presumably, data outside this region is continued upward by some
other means. For example, data outside the region might be
continued upward using spherical-earth (Legendre transform)
methods. Alternatively, if the earth's surface is divided into
‘ convenient blocks of data, each block can be continued upward

g




|

T —— T

using Fouri# methods. Thus, it is sufficient to consider the
problem of a single block. To simplify the following example,
a circular area is used, and the boundary potential is con-
stant over the area.

- i Y<e
T (p;e) = (3=-2)
0 y>e

The more realistic case of a square patch and nonuniform
potential can be treated by essentially the same methods. In
particular, the l-term inner and composite expansions for the
general case are Egqs. 2-23 and 2-47. Inasmuch as the boundary
condition is isotropic, the exact solution Eq. 2-1 can be
reduced to a single integral (Ref. 9)

2 Y {0k S e
Tea L) e ;1) J T (b;e) sing E(v) d@ (3-3)
) 0 (a=b) va+b
where

a = r2+l-2r cosvcosé (3-4)

b = 2r sinysin@ (3=8)
:‘7/2 9

E(v) = | /1-v2 sin®x dx (3-8)
‘0

d

7 = 2b/(a+b) (3-7)

Here E denotes the complete elliptic integral of the second
kind. Substituting Eq. 3-2 into 3-3 yields

2 * s 3 T (e a
{r «1) € |~ Sin & E(v) d8 (3-3)
(

&N )
" Xo) a-b) va+d
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The inner expansion will now be constructed. The
boundary condition Eq. 3-4 pecomes

15 R<1

T (R) = (3-9)
(o] R>1

rg (R) = 0 n=2,3,... (3-10)

The first-order inner solution is Eq. 2-19 where

1
=0 f a
Tl(u) = 27T¢ R Jo(mR) dR (2-11)

l

This integral is given by (Ref. 6):
+ To(w) = 27(t/w) J;(w) 5-12
Therefore, the first-order inner solution is

T, (2,B) = ¢ L)e'”z J («R) Jl(u) dw (3-13)

This integral cannot be expressed in terms of elementary ,
functions. The second-order inner solution is

= -2 3-14 |
T5(z,R) 5 (T + 2 le) ( ) n

Inasmuch as the traansform Ti is bounded at zero frequency, the i

l-term outer expansion is Eq. 2-34 with

2
= £ 79 . 4" 3-15
u T Tl(O) 2 t/4 ( )

The l-term composite expansion is Eq. 2-41. |
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For the special case y=0, both the exact solution
(Egq. 3-8) and matched expansicns can be evaluated in terms of
elementary functions. The exact solution (Eq. 3~-8) becomes

T(r,0) = {ZLE fl - (r-l)/(r2+1-2 r coss)l/zj (3-16)

The first-order inner sélution can be evaluated from either
the Hankel transform Eq. 3-13 or the direct integral Eq. B-1:

s
T,(2z,0) = ¢t (1 - z//1+27) (3-17)

The l-term outer expansion Eq. 2-34 for ¥=0 is

r —~ '.‘2' 4 .._—-r-‘.l (p)
T, (r,0) (e"t/4) €Tl (3-18)
and the l-term multiplicative composite expansion is
TC (G E%i £ LI = z//l+zg) (3-19)

The second-order ianner solution is

" 2+22 7
5 (5-20)
|

T2 (2,0) = t(z/2) Ll -z ?2:257375—

Notice that for a local gravity disturbance (z<<1),
the exact solutions (Egqs. 3-8 and 3-16) are numerically ill-
conditioned. The spherical-earth formulas do not provide an
accurate, efficient method for upward continuation. However,
the matched expansion (Eq. 3-19) is accurate, efficient, and
uniformly wvalid. Furthermore, the matched expansion can be
easily improved, if necessary, by addihg an additional term
to the inner and/or outer expansion. If more accuracy is
needed in the near field, another term is added to the inner
expansion. Similarly, another term in the outer expansion
improves accuracy in the far field.

didaia




4. STOKES' INTEGRAL VIA MATCHED ASYMPTOTIC EXPANSIONS

Stokes' integral relates gravity anomalies to the

disturbance potential on the sphere

Re 27
T(H.A) = = [ [ Ag(v,a) S(¥) sinvdude (4-1)
Q Q

where S is Stokes' function (Ref. 8). If many evaluations
of this integral are needed, a spherical harmonic transform

is useful.
£ A g
T(9,0) = Ry [ —3 (4-2)
n=o0

2 Tr ' 1 1 r L
da, = = g g ag(8,A ) P (cosy) sind de di (4-3)

However, the harmonic series (Eq. 4-2) converges 100 slowly for

modeling local (short-wavelength) gravity anomalies. The s

disturbance poteantial due tO local gravity anomalies can be

computed using the flat-earth version of Stokes' integral
H

(Ref. 10).
D ., _bogfu,v) du dv
™. 9) 2 2= | | ' W (4-4)
27 L (xew)? (g0t
The flat-earth computation can also be carried out using Fourier
transforms (Appendix 4).
- N — —i(wyX*way)
T(x,y) = —g [ [ (L/w)dg (wq,5q) © 177727 “dwq dug
47 -» "
(4=5)
To(uyug) = [ [ te(xy) e 0127 axay  4-6)

-0

33

-
PTCTE WY WAL o Ry ST




However, the flat-earth formulas (Eqs. 4-4 through 4-6) are only
valid in the vicinity of the origin (small x,y). Therefore,
neither the round- nor flat-earth formulas provide an accuracte,
uniformly-valid method for computing the disturbance potential
from local gravity anomalies.

In this section, inner, outer, and composite expansions
are derived for computing the disturbance potential from local
gravity anomalies. As in the previous section, the derivation
is carried out for the isotropic case and corresponding non-
isotrcpic results are inferred.

Stokes' integral is the solution to the differential

equation

PT, + 2T = -£(r,4) : (4-7)

The function f (f=r'Ag) satisfies a Dirichlet problem outside
the sphere

< ...2."-4._1:.3 J_CO‘C’.')_. = 4 -
rr T r 0 _2 Py 5y o \E=ay
r r
5 )
fsf£ (y;e)= R 48 r=1 (4-9)
£9(u;e) = £9(u+2m;e) (4-10)

As in a previous section asymptotic expansions are assumed
of the form Eq. 2-14 and

f£(r,u;e) ~ £,(2,R) +¢ £5(2,R) +... (4-11)

20

£9¢y:g) ~ fi(a) sc f%(.)*... (4-12)
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First-order problem

Tl = -»efl

4

Second-order problem

= -¢gf, - 2T - 27
- 2 lz 3l

Ty

The following sequence of boundary-value problems is obtained.

(4-13)

(4-14)

The solutions are readily found, inasmuch as the Diricinlet

problem was treated in a previous section.

First-order solution (isotropic case)

-]

£
Tl(z,R) = 2= J

=0 . -wz
" T (w) e I (wR) dw

»

R (R) J (wR) R

—0 =
fl(w) 27 b 1

Second-order solution (isotropic case)

T,(z,R) = - Lle +.ZE,..J (l/u)?cl’(u) g o I (wR) dw

0
-]
£ = ~wZ
e J[O fz(w) e JO(-»R) dw

xR
‘f‘;(m) = 27 L) afgca) J (wR) dR

At zero altitude (z=0, r=1) we have
x

T = g |

—o
" fl(u) JogwR) dw
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(4-16)

(4-17)

(4-18)

(4-19)




sl iy

o™ f B e A4, 0 y s I ZC S

.2\3) ol :O (L/fw) B2 () Jo(_.\H)dw oge X0 fw) 'JD‘./,.JP.)(:uJ
‘ - -~ 'O -

The corresponding Zcormulas for the AO0isSOTropic case are:

First-order solution (nonisotropic case)

-]
| S e o =2 -i(w, X+ ;
Ty(x,9) = <5 [ [ (L/w) Tolug,uy) o H81%997) gy qy 4_
a7 - =2 = = =
=! i
(4-21) |
§
=0 - 1w, X+w,7) |
, " ¢ D L 3 3 4
TiCay,up) = [ [ 27 (x,5) e ' 1%¥27) ax4y (4-22)
-2 S
I Second-order solution (nonisotropic case)
]
[
z P o P =0 -i(uw,X+w 7)) .
Tg(K,Y) iaifacs SOl (L/w7) -l<..)1,.l-2) a 1 2 :Lu._dmz
am -=
‘ = ‘:: s) "'(d g-«; y\ i
=5 (L/a) Z5(u ,u,) @ 17727 duw.dug
_TT -3 - - - -
(4-23)
=0 AT 1w, X+u,7)
:2(31,»9) A (x,7) e it 2 dxdy (4-24) !
= -2
A comparison of Eqgqs. 4-5 and 4-21 reveals that the first term

of the inner expansion (Eq. 2-14) is the familiar flat-earth
approximation. This confirms that Egqs. 1.2-11 through 1.2-13
is an appropriate choice of inner variables. |

The outer expansion will aow be coastructed by a

matcaing procedur. as was done ia a previous section. The

| R ————




l-term inner expansion (Eq. 4-15) is written in outer variables
and expanded for small <.
k-]

S 7 79 0 —m(r-l)/; ‘ > ‘ -
cp = 51 “'J fl(..)) 2 JO(ANJ/-) dw (4 25)

A change of variable (u=w/c) yields

2 : -(r-
cp = o [0 Tsw) e T g wu)  du (4-26)

Assuming that the integral

e L pod (o] -
fl(q) = 2ﬁ,% R £] (R) dR (4-27)

is bounded and non-zero, Eq. 4-26 becomes

R
P =37 f§<°>£ e~ (T=1)% J (yu) du (4-28)
o2 . o
=37 72(0)/ i(r—l)2 s w2|1/2 (4-29)
27T i L | ]

The implied singularity in the outer expaasion 1is Eq. 2-33

where

b

u o= 27 (0)/(2m) (4-30)

The composite expansion is

2, .2.1/2
T (r,9) ~ [ér‘l) Sl ]1/2 T,(z,R) (4-31)
(r°+1-2r cosv)
At zero altitude (r=1, z=0) we have
W
T (P) =~ oo (4-32)
- /f(l-cosw)l7§ .
i
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e

=(v/2) esc(y/2) T, (R) (4-33)
The corresponding-nonisotropic resulct 'is
T (b,a) = (/2) csc(v/2) T, (x.7) (4-34)

. The term (¥/2)csc(¥/2) in Eq. 4-34 is a correction factor
applied to the flat-earth results. This factor is near unity
-- for example, when Y=10 and 60 degrees, the factor is 1.001
and 1.047, respectively. Equations 4-33 and 4-19 constitute a
uniformly-valid solution to Stokes' problem. Local gravity
anomalies are processed using the flat-earth formulas; when
the results are multiplied by the appropriate factor in Eq.
4-33, they become valid for all angles (w%).

Returning now to ‘Eq. 4-26, suppose that the integral
(Eq. 4-27) is zero. Then Eq. 4-26 becomes

ep = 2B [ 4 o-(F-1)u J_(vu) du (4-35)

Nt

3/2 (4-36)

where

-]
-lim . 2 <0 ‘o
Bom 2 R *I(R) Jl(UR) dR (4-37)

The implied siangularity in the outer expansion is
Eq. 2-34 with
3

u = (=

/2) B (4-38)
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The composite expansion is

Bepal}® #

w2}3/2 oit . :
(r2+l-2r cosy)

v Rl

Tc(r,W) ~

At.zero altitude (r=1, z=0) we have
3 <!
T, (W) ~ (¥7/8) ese™(w/2) Tl(R)
The corresponding nomnisotropic result is

T, (4,2) ~ (w3/8) csc3(w/2) Tl(x,y)

Note that Egs. 4-34 and 4-41 apply when the integral
(Eq. 4~27) is non-zero and zero, respectively.

(4-39)

(4-40)

(4-41)

e




3 VENING-MEINESZ INTEGRAL VIA
MATCHED ASYMPTOTIC EXPANSIONS

The Vening-Meinesz integral relates gravity anomalies
to vertical deflections (Ref. 8).

L 2T
g€, X 14 a ds . 35
P z%a 71 sstw,a) [o052) ¢ stavdvda (5-1)
1n(S,A) o) o) sina) "

For dealing with local (short-wavelength) gravity anomalies, the

-

flat-earth version is convenient (Ref. 103

v=-v

f;(x,y)}g R Ag(u, v) PR e

T .S :).TTG"J i {.—
? (x,7) A {(x—u)z . (y-v)2]3/2 - u(

i A AN e

haidoa

The flat-earth computations can also be carried out with Fourier
transforms

§(x,¥) » . fw i
- 1 ¢ i ) eg = ~i(wyx*+w,y) :
{H(X,Y)} 4#2G le o {wl}AS(wl,wz) e : 27 "dw, dug |

(5-3)
where *E is given by Eq. 4-6. However, the flat-earth formulas
(Eqs. 5-2 and 5-3) are only valid in the vicinity of the
origin (small x,y).

Asymptotic expansions that enjoy the best properties !
of the round- and flat-earth formulas can be derived by dif-
ferentiation of the results in the previous section. In
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particular, the deflections in the X and y directions are

given by
1 -3T >
¥ Lhey —a
6x GD 3x L
. 1 3T =
Oy = & 3y (35-95)

An inner expansion is sought of the form
& (B,a3e) & (x,7) * 8d_ (2,7} *u.. (5-6)
Xy Xq Xy

and similarly for 6y. From Egqs. 4-19 and 4-20 we have

- R)s[ =0
(x,y) n=XEBIE 79 (4) I (uwR) du (5-7)
x4 " 27GD ,[o 1 1

d, (X,7) = gV [” T9(w) J.(wR) dw
g 27GD o L 1

X -]

u?‘;(u) J, (uR) dm} (3-8)

0

The corresponding formulas for the nonisotropic case are

-]
=is =0 ~i1(wyx+n,7)
§, (x,y) = [ [ (uq/w) T{(wq,wy) @ 1727 4w, du
xl 4WZGD e % 0 Rk B g
(5-9)
-}
=-ic i 2. =0 —i(w,X+wa,y)
O (S,7) = [ | (uq/w®) $(uw,,0y) @ 1 27 ' dw, dw
%2 4n20D - 1 Ll 2 12




=
=

The associated formulas for Sy are obvious.

The outer expaasion will aow be constructed by the same
matching procedure used in the previous sections. The l-term
inner expansion (Eq. 5-7) is written in outer variables and

expaanded for small <.

ep = =(E/R)e J»I () o (T D)% 5 (upse) aqu (5-11)
27GD o

A change of wvariable (u=w/z) yields

3 = &l
cp = lgig%EL-fu??(su) axér-tiua Jq(vu) du (5-12)
m (o) =

Assuming that Eq. 4-27 is bounded and non-zero,

R)e° <0 w .
cp = S—L—% fl [(r l) 2]3/2 (0-13)

The implied singularity in the outer expansion is

5x(r,ﬂ) = (r;ilj;2 ZOSw)a/Z gl
where
u = AER s3?°<o> ' (5-13)
27GD 1




The l-term multiplicative composite expansion for soth the
isotropic and nonisotropic cases is

S (x,7) ~ (¥3/8) siav escd(u/2)6, (x,7) (5-16)
S 1

Returning now to Eq. 5-12, suppose that the
integral ¢(Eq. 4-27) is zero. Then Eq. 5-12 becomes

my 4 =
cp = :.QEG?RL B "‘Q uze'(r-l)qu('yu) du (5-17)
4 3(r-1)uw 2
« (X/R)e B — — (5-18)
GD L(r-l)2 % nga/z

The implied singularity for the outer expaasion is

-3ursinv (rz-L)

§ (T, ) =~ = (5-19)
= (r®+1=-2r cosw)a/2
where
3
- L2/R)e .
M ) B (£=20)

The l-term multiplicative composite expansion for botha the
isotropic and aonisotropic cases is

Se (x,9) ~ (4/32) sinv esc®(u/2) 5 (x,7) (5-21)
e 1

The foregoing expansions provide the vertical deflec-
tion components (St,iy) in the local x,y cocrdinate system.
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A Transiormation is necessary TO convert these comronents

into north and east deflections (£,n). This traansformation

depends on the latitude and longitude of the origin of cthe

local coordinates,

as well as the position (x,y) of the point

where the deflection is sought. Although tedious, such traas-

formations are elementary, and are not presented here.
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6. DISCRETE FOURIER TRANSFORMS

The foregoing theory is suitable for analytical models
such as the earlier examples. For numerical mcdels, the dis-
crete Fourier transform is more useful. The disturbance
potential T and its transform T are both treated as discrete
and periodic. The Fourier transform (Eq. 2-3) becomes

M/2-1 N/ 2ri(mk/M+n2/N)

2-1
(o]
= e (6-1)
L T 1o B

A

whaere the integers k,2,m,n are defined by

x = k Ax y = L Ay (6=-2)
wl = le We = an (6=3)
2T - 2n
' 4 *WEx U *way (6-4)

For simplicity, M and N are assumed to be even integers. The
inverse transform for upward continuation (Eq. 2-7) becomes

M/2-1  N/2-1

R -wz _=-27i(mk/M + ni/N)
Ter = W :E T ® (8-5)

m=-M/2 n=-N/2

where

2
w- =W

+ 02 = 0?22 + 0% (6-6)

[l \V

Fast Fourier transform algorithms are normally based on one-
sided transforms whereas Egs. 6-1 and 6-6 are two-sided. The

P ST AT o i o b e




appropriate one-sided transforms can be obtained by shifting
the summation operators, inasmuch as both the potential field
Tkz and transform Tmn are periodic. The one-sided transforms

are
ol Wsl
™ . j; f; o 2Ti(mk/¥ + a2/N) (6-7)
. K=o 2=o
M=1 N=1
1 25 =0 -wz _ =27i(mk/¥M + a2/N)
y = m— 7y e e (6-8)
k2 NM T mn
where
w2 = p2a2 + g%2 6-9
W PRI *+ a2, ( )
{
p = |m - M/2[-M/2 (6-10)
| |
q = |a - N/2|-N/2 (6-11)

As an example of upward continuation using discrete
Fourier transforms, consider the potential field of a point
mass.

D = depth of point mass = 319 km (6-12)
Ax = Ay = D/2 = 160 km (6-13)
z = 319 km (6-14)
Case 1: M=0XN= 32 (6-13)
Case 2: M=0XN= 64 (6-16)

As in the earlier example, the mass of the disturbing body is
selected so that an undulation of 1 meter is obtained directly
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over the point mass. The point mass is located directly below
the center of the square grid. In each case, the potential
field of the point mass is computed at zero altitude. These
gridded values are continued aloft using the discrete Fourier
transforms (Eqs. 6-7 and 6-8). The results-are compared with the
exact flat-earth solution to assess the errors introduced by

the discrete transforms. Profiles of the errors are shown in
Fig. 6-1. For the smaller grid, the error is 2 to 3 cm, where-
as the larger grid reduces the errors to 0.2 to 0.3 cm. The
larger grid is obviously a better approximation of the infinite-
length transforms (Eqs. 2-7 and 2-8). :

Errors introduced by the flat-earth approximation and
discrete Fourier transforms can be compared by examining Figs.
1.1-2 and 6-1. TFigure 1.1-2 shows that the flat-earth approxima-
tion introduces an error of 1 cm. Thus, the error introduced
by discrete transforms is larger than the flat-earth error for
the smaller grid (M=N=32) and smaller than the flat—eirth
error for the larger grid (M=N=64). These results are not
surprising because the dimensions of the smaller and larger
grids are 5100 x 5100 km and 10,200 x 10,200 km, respectively,
whereas'the earth's mean radius is 6371 km.

It is interesting to compare the frequency content
of the errors introduced by the flat-earth approximation and
discrete transforms. The flat-earth error (Fig. 1.1-2) is
basically bimodal: a short-wavelength spike appears at
Y=4 degrees and a long-wavelength error appears at ¥=180
degrees. The discrete transform error is also bimodal:
short- and long-wavelength errors arise from the discrete
spacing and finite length of the data. Of course, these
short-wavelength errors decay quickly as altitude increases.
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R-32932

Z =0 = 319km
AX = AY = 0/2

SMALL GR1O
M N=32

UNDULATION ERROR (cm)
~

LARGE GRID
A \‘

0 1000 2000 3000
DISTANCE FROM CENTER OF GRID (km})

Figure 6-1 Errors in discrete Fourier Transform
Upward Continuation of the Undulation
Generated by a Shallow Point Mass.
The Undulation Directly Over the
Point Mass is 1 Meter.

The point mass example is convenient for comparing
errors introduced by the flat-earth approximation and finite-
length transforms. However, this example is somewhat benign
because the potential field tapers smoothly to zero at the
edges of the finite grid. Real gravity fields do not taper
to zero at the edges and discontinuities appear in a periodic
extension. In such cases, the errors introduced by finite-
length transforms are more serious than portrayed in the point
mass example (Fig.6-1 ). However techniques are available for
mitigating such ""edge effects” (Refs. 11, 14).

For readers who are unfamiliar with the fast Fourier
transform, some remarks about computer time are appropriate.
The computer time needed for this algorithm tends to be quite
minimal, and increases at a relatively modest rate (MN log MN)
as the dimension (MxN) of the grid increases (Ref. 12).

48

YIRS RSO S SR VRGPS WL SES PRI TRt v,




-

The foregoing example problem required 3 seconds of computer jj
time on the IBM 370/158 digital computer, which included four
Fourier transforms (two for M=N=32 and two for M=N=64).




T - ‘ CONCLUSIONS

Flat-earth formulas provide efficient descriptions
of local (short-wavelength) gravity disturbances. The accuracy
of this approximation can be improved by the method of matched
asymptotic expansions. The inner and outer expansions remove
the short- and long-wavelength errors of the flat-earth
formulas, respectively. The resulting composite expansions
provide uniformly valid descriptions of all wavelengths over
all altitudes and distances. The additional computations
needed to achieve these accuracy improvements are typically
insignificant because the inner exransion is computed using
Fourier transforms and the outer expansion consists of simple
singularity functions such as Egs. 2-33 and 2-34.

If discrete rather than continuous Fourier transiorms
are used, additional errors arise due to the finite spacing
and length of the grid. However, these errors can be reduced
by using a finer grid spacing, larger grid, and ''edge effect"
compensation techniques.
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APPENDIX 34
FOURIER TRANSFORMS OF POISSON AND STOKES ' INTEGRALS

The flat-earth Poisson integral (Eq. 2-6) can be viewed
as a linear system with the boundary poteatial T° and exterior

potential T as the input and output. The impulse and fre-
quency response functicas are

2

h(x,y) = (A-1)
P T N T
L = i(w,Xx +w,.y)
H(uy,0y) = & JJ (x2ry2r22)"8/2 oL 2 Tgxay  (4-2)

Inasmuch as the impulse response is isotropic, the Fourier
transform (Eq. A-2) can be written as a Hankel transform

0
2.23/2
Blu s} © & | HCES W ™S 1 fuRy 4B (4-3)
L7252 0 o
where
wz = wi + ug (A-4)
R = x2 + yz (A=3)
Equation A-3 is the same transform that appears in the
statistical example (Eq. 1.2-9) hence
H(w) = e *% (4-6)

- which yields Eq. 2-7.




The flat-earth Stokes' integral (Eq. 4-4) can be analy-
zed similarly. The impulse and frequency respoanse functions are

D
h(x'y) = (A-7)
2w(x2+y2)l/2

-

2,-1/2 1(wyx+w,y)

2 : .
E(ml,wz) = %% jf (x"+y 2 dxdy (A-8)
-0
=D j J_(wR) dR (4=9)
o 7 \

This is the same transform that appears in the deterministic
example (Eq. 1.1-17) hence

H(w) = D/w (4-10)

which ytelds Eq. 4-5.
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APPENDIX B

DIRECT INTEGRAL FORM OF INNER EXPANSIONS

In the text, the inner expansions such as Eq. 2-14 are
expressed in terms of Hankel and Fourier transforms, for example,
Egs. 2-19, 2-20 and 2-23, 2-24. These solutions can also be ex-
pressed as direct integrals. For example Egs. 2-19 and 2-20 are
replaced by (Ref. 13).

Ti(u) E(o) udu
(B-1)

Tl(z,R) =

2z =
|
(o]

[(R-u)?+2%] ((R+u)2+221%/3

where £ is the complete elliptic integral of the secoad kiad
(Eq. 3-6) and

32 i 4Ru - (B=2)
(R+u)2+z

Equation B-1 effectively replaces two integrals by one. Sim-
ilarly, the second-order inner solution (Egs. 2-21 and 2-22)
can be expressed as

TZ(Z,R) = - (2/2) (Tl+lez)

T9(w)E d
4 %,5 2(u) (0) udu (B=3)

|
0 [(R-u)2+2?] [(R+u)2+221%/2

For the nonisotropic case, Eqs. 2-23 and 2-24 are replaced by
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0 .
= T-(u,v) dudwv
= 7 :
T (x,7,2) = 5%~ [ ] 5 s (B4
Similarly, Egs. 2-25 and 2-26 are replaced by
Ty(x,7,2) = -~ (2/2) (T1+lez)
o
© To(u,v) dudv
¢ 2 (B-53)

e Bl
2T Lo [(x-7)%#(y-v) e2?) 32
In the Stokes' solution, Eas. 4-21 through 4-24 are
replaced by

= f7 fi(u,v) dudv
T(%,57) === (B-6)
L J 3
M e [(x-w)ie(z-n)f PP
and
T, (x,y) = = f? £2(a,v) 1o [(x-u\z*( -v>2’ dudv
2" 4 __ L S X=u) =y R -
(o]
< : f5(u,v) dudv s
+ J »
o o2 [(x_u)§+(y_v)2]1/2

In order for the first integral in Eq. B-7 to be bounded, it

is required that

x
ff £%x,y) dxdy = © (B-8)
= 1

The disadvantage of these direct integrals is that
aumerical integrations are needed for each term of the ianer
expansion. When Fourier transforms are used, aumerical inte-

grations are avoided altogether.
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